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Abstract
Homeodomain-only protein X (HOPX)-β promoter methylation was recently shown to be frequent in human cancers
and was suggested as tumor suppressor gene in esophageal and gastric cancer. The aim of this study was to inves-
tigate the mechanistic roles of HOPX-β promoter methylation and its clinical relevance in colorectal cancer (CRC).
HOPX-β promoter methylation was assessed in human CRC cell lines and 294 CRC tissues. HOPX mRNA and pro-
tein levels were measured in relation to HOPX-β promoter methylation. The effects of forced HOPX expression on
tumorigenesis were studied using in vitro and in vivo assays. The association between HOPX-β promoter methylation
and clinical relevance of CRC patients was determined. HOPX-β promoter methylation is cancer-specific and fre-
quently found in CRC cell lines and tissues, resulting in the down-regulation of HOPX mRNA and protein levels. In
CRC cell lines, forced expression of HOPX suppressed proliferation, invasion, and anchorage-independent growth.
DNA microarray analyses suggested critical downstream genes that are associated with cancer cell proliferation, in-
vasion or angiogenesis. In a mouse xenograft model, HOPX inhibited tumorigenesis and angiogenesis. Finally,
HOPX-β promoter methylation was associated with worse prognosis of stage III CRC patients (hazard ratio = 1.40,
P= .035) and also with poor differentiation (P= .014). In conclusion, HOPX-β promoter methylation is a frequent and
cancer-specific event in CRC progression. This epigenetic alteration may have clinical ramifications in the diagnosis
and treatment of CRC patients.
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Introduction
Colorectal cancer (CRC) is the second most prevalent cancer and the
fourth leading cause of cancer death worldwide [1]. Although CRC
screening, that is, fecal occult blood test and colonoscopy, has con-
tributed to a reduction in mortality [2], 70% of newly discovered
CRC patients are still detected at an advanced stage, resulting in poor
prognosis [3]. Recently, sophisticated scientific technologies have
emerged, such as DNA microarray, pharmacological unmasking epi-
genetic profiles, and proteomic techniques, advancing the discovery
of novel biomarkers for CRC [4].

Alterations in DNA methylation, an epigenetic process present in
mammalian cells, are one of the hallmarks of cancer [5]. The promoter
regions of many genes, particularly housekeeping genes, are populated by
CpG dinucleotides, which are often underrepresented in the remainder
of the genome. These regions have been termed “CpG islands” because
they are protected frommethylation in normal cells [6]. This protection is
critical because methylation of CpG islands is associated with loss of ex-
pression of that particular gene. In carcinogenesis, global hypomethyla-
tion [6,7] is often accompanied by dense hypermethylation of specific
promoters [5]. Many studies have demonstrated that silencing of tumor
suppressor genes (TSGs) is associated with promoter hypermethylation
in human cancers and serves as an alternative mechanism for loss of func-
tion. However, cancer-specific methylation is rather a rare event and is
usually evident only in genes with a robust tumor suppressive function.

We previously developed pharmacologic reversal of epigenetic silenc-
ing and uncovered amyriad of transcriptionally repressed genes in human
cancers [8]. Using this technique, we have identified several novel TSG
candidates, such as PGP9.5 [9], NMDAR2A/B [10,11], and NEFH
[12]. Among these candidates, homeodomain-only protein X (HOPX)
was of particular interest because its methylation pattern was found
to be cancer-specific [8]. Indeed, HOPX-β methylation was correlated
with tumorigenesis and worse prognosis in gastric and esophageal can-
cers [13,14]. In the present study, we investigated the importance of
HOPX-β promoter methylation in CRC. We assessed the methylation
status of HOPX-β promoter in CRC cell lines and tissues and looked
for its functional role and clinical relevance.

Materials and Methods

Cell Lines
CRC cell lines (HCT15, DLD1, COLO205, and LoVo) and an

esophageal squamous cell carcinoma cell line (TE15) were kindly pro-
vided by the Cell Response Center for Biomedical Research Institute
of Development, Aging and Cancer, Tohoku University (Sendai,
Japan). HCT116 and SW480 were purchased from American Type
Culture Collection (Manassas, VA). Other CRC cell lines (COLO320,
CW2, and CACO2) were obtained from RIKEN BioResource
Center (Tsukuba, Japan). We previously reported that CpG islands
of HOPX-β promoter are not methylated in TE15. TE15 served as neg-
ative control for HOPX-β promoter methylation [13,14]. HCT15,
DLD1,COLO205, COLO320, CW2,CACO2, andTE15were grown
in RPMI-1640 medium (GIBCO, Rockville, MD), supplemented with
10% fetal bovine serum (FBS). LoVo, SW480, and HCT116 were
grown in Ham F-12, Leibovitz L15, and McCoy 5A mediums, respec-
tively (GIBCO), all supplemented with 10% FBS.

Mouse Xenograft Assay
Twenty male BALB/cAJcl nude mice, 7 weeks old, obtained from

CLEA Japan Inc (Tokyo, Japan), were divided into four groups (n = 5
in each). Mice were injected with 1 × 106 cells on the left flank
with either HCT116 or DLD1 cells transfected with a mock vector
as control; and on the right flank, with cells transfected with a
HOPX-expressing vector. Tumor volumes were calculated from caliper
measurements of two orthogonal diameters (larger (x) and smaller
( y) diameters) by using the formula: volume = xy2/2. All animal experi-
ments were performed in strict accordance with the guidelines for
animal experiments of the Kitasato University School of Medicine.

Human CRC Tissues
Paraffin-embedded primary CRC tissues and paired normal mucosa

specimens were obtained from 99 patients diagnosed with stage I to
IV CRC (Table W1), and 146 patients diagnosed with stage III CRC
(Table W2), used for the quantitative methylation-specific polymerase
chain reaction (Q-MSP). An independent set of 22 samples was sub-
jected to immunohistochemistry assays. Snap-frozen tissues were taken
from 27 patients diagnosed with stage I-IV CRC, used for the Q-MSP
assay coupled with reverse transcription–polymerase chain reaction
(RT-PCR). All specimens were taken during either potentially curative
resection (stages I-III patients), or palliative resection (stage IV pa-
tients). TNM classification was made according to the UICC (Unio
Internationalis Contra Cancrum) staging system. All individuals gave
written informed consent for pathologic assessment and molecular test-
ing on their samples. This study was performed with approval of the
Ethics Committee of the Kitasato University School of Medicine.

Bisulfite Treatment of DNA and Sequencing Analysis
Tissue sections from tumor and corresponding normal mucosa were

stained with hematoxylin and eosin and dissected under microscope.
Genomic DNAwas subsequently extracted using QIAampDNA FFPE
Kit (Qiagen Sciences, Hilden, Germany). Genomic DNA from cell
lines was extracted using QIAamp DNA Mini Kit (Qiagen). Bisulfite
treatment was carried out with EpiTect Bisulfite Kit (Qiagen) and was
subsequently amplified by PCR. Primer sequences for the HOPX-β
promoter region were designed to recognize DNA alterations caused
by bisulfite treatment (Table W3). The PCR products were either di-
rectly sequenced (Figure 1B) or purified with QIAquick Spin (Qiagen)
and inserted into a pCR4-TOPO vector using the TOPO TA Cloning
Kit for Sequencing (Invitrogen, Carlsbad, CA; Figure 1D).

Quantitative Methylation-Specific PCR
For quantitative methylation analysis, TaqMan Q-MSP was carried

out using iQ SuperMix (Bio-Rad Laboratories, Hercules, CA) as
reported [11]. All reactions were performed in triplicates. Primer
sequences and PCR conditions are described in Table W3. The most
frequent location of restriction CpG sites for translation has been
reported to be around 500 bp upstream of translation start site [11].
Accordingly, we chose the segment for Q-MSP as in our previous
report, which regarded HOPX-β methylation in gastric cancer and
showed the correlation between HOPX-β methylation and its expres-
sion [14]. In addition, because we used FFPE sections, the primers were
set for ∼150-bp segments to keep the quality of PCR products. Al-
though the quality was lower, when we analyzed a ∼300-bp segment,
results from available samples were similar to those of the 142-bp seg-
ment presented in the article (data not shown). CpGenome universal
methylated DNA and unmethylated DNA (Chemicon International,
Temecula, CA) served as positive and negative controls, respectively.
The methylation value was defined as the ratio of fluorescence inten-
sity emitted from the HOPX-β promoter divided by that of β-actin
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and multiplied by 100 (Q-MSP value). Receiver operating charac-
teristic (ROC) curve was used to determine the optimal cutoff value
for Q-MSP.

Reverse Transcription–Polymerase Chain Reaction
Total RNA was extracted from the homogenized tissues and harvested

cells using the RNeasy Mini Kit (Qiagen) and reverse-transcribed with
SuperScript III reverse transcriptase kit (Invitrogen). RT-PCRwas carried
out for the three spliced variants and for the common transcript core
(HOPX-core) of HOPX and normalized to β-actin. Quantitative real-
time RT-PCR (qRT-PCR) was performed using SYBR Premix Ex Taq
(Takara Bio, Inc, Shiga, Japan) as previously described [15]. Primers’
sequences are described in Table W3.

Western Blot Analysis
Total protein was extracted from DLD1 and HCT116 cells and

subjected to Western blot analysis using the following antibodies:
mouse HOPX monoclonal IgG1κ antibody (3D6; Sigma-Aldrich, Inc,
St Louis, MO), mouse V5 IgG2a monoclonal antibody (Invitrogen), or
mouse β-actin IgG2a monoclonal antibody (Sigma-Aldrich).

5-Aza-dC and TSA Treatment
Cells were split to low density (1 × 106/T-75 flask) 12 to 24 hours

before treatment. Cells were then treated every 24 hours for 4 days
with either 1 or 5 μM 5-aza-2′-deoxycytidine (5-Aza-dC; Sigma-
Aldrich) dissolved in 50% acetic acid or were mock treated with PBS
including the same amount of acetic acid. As indicated, 300 nM of
trichostatin A (TSA; Sigma-Aldrich) was added to the medium for the
final 24 hours [13].

Immunohistochemistry
For immunostaining, antigen unmasking was performed with

Protease K (DakoCytomation, Glostrup, Denmark) or microwave
with pressure cooker, endogenous peroxidase activity was blocked by
incubation in 3% H2O2/methanol for 5 minutes, and nonspecific
antibody binding was blocked by incubation with 1% diluted normal
horse serum for 30 minutes. Sections were then incubated at 4°C over-
night with the following antibodies: mouse HOPX monoclonal anti-
body (3D6), rat CD31 monoclonal antibody, rat EphA2 monoclonal
antibody, or rabbit CYR61 polyclonal antibody (Abcam, Cambridge,
United Kingdom). Immune complexes were detected with a Vectastain
Elite ABC kit (Vector Laboratories, Inc, Burlingame, CA) according
to the manufacturer’s instruction. These immune complexes were
detected using the 3,3′-diaminobenzidine substrate with/without nickel
ammonium sulfate (Vector) as a chromogen. Sections were counter-
stained with hematoxylin.

Immunofluorescence
Cells were fixed with 10% formaldehyde at 4°C for 30 minutes.

Nonspecific antibody binding was blocked by incubation with 1%
diluted normal horse serum/1% Triton X for 30 minutes. The sam-
ples were incubated with Alexa Fluor 568–conjugated phalloidin
(Molecular Probes, Inc, Eugene, OR) for 1 hour at room temperature.
Then, the samples were incubated with 4′,6-diamidino-2-phenylindole
(Molecular Probes, Inc) for 5 minutes at room temperature. Samples
were analyzed using a confocal scanning laser microscope (LSM710;
Carl Zeiss MicroImaging GmbH, Oberkochen, Germany). Serial
optical sections (collected at 1-μm intervals) in the z-axis were collected
and overlaid using ZEN-2008 software (Carl Zeiss MicroImaging).
Microvessel Density and Microvessel Area
Microvessel density (MVD) and microvessel area (MVA) in the

stroma were assessed as a parameter of tumor-associated angiogenesis,
according to the established methods described previously [15]. Areas
of highest neovascularization were identified by scanning the stroma
around the tumor at low power (40-fold and 100-fold magnification).
After identifying the most vascularized area, individual microvessels
were counted on a 400-fold magnification field. MVD was expressed
in terms of the number of vessels per unit area (mm2). MVA was calcu-
lated using the ImageJ software (National Institutes of Health Research
Service Branch, Bethesda, MD) and was expressed as the area of vessels
per observed area (mm2/mm2). MVD and MVA were calculated in
four different sections, four fields in each.

Stable Transfections
A full-length complementary DNA (cDNA) of HOPX was isolated

from TE15 cells using RT-PCR with the following primers (5′ to 3′):
forward, caccatgtcggcggagaccgcgagcgg; reverse, gtctgtgacggatctgcactctg.
Full-length cDNA of c-Fos (ORH01934) was purchased from Kazusa
DNA Research Institute (Chiba, Japan) and amplified with the fol-
lowing primers (5′ to 3′): forward, cccaagcttcaccatgatgttctcgggcttc;
reverse, gctctagatcacagggccagcagcgtgggtg. The insert of HOPXwas sub-
cloned into pcDNA3.1D/V5-His-TOPO vector (pcDNA 3.1-HOPX)
using a pcDNA3.1 Directional TOPO expression kit (Invitrogen). The
restricted PCR products of c-Fos were ligated into pcDNA3.1D/V5-
His-TOPO vector within the HindIII-XbaI sites (pcDNA 3.1-c-Fos).
The sequences of the subcloned cDNA were verified by sequencing
analyses. Mock vector with self-ligation (pcDNA3.1-mock) was used as
a control. Cells were transfected using Lipofectamine 2000 (Invitrogen)
in OPTI-MEM medium (Invitrogen) according to the manufacturer’s
instructions. Stable clones with HOPX or mock were established by
G418 (GIBCO) selection. The expression of each gene was confirmed
by RT-PCR and Western blot analysis.
Proliferation Assay
Cell proliferation and viability (2 × 103 cells/well) were measured

using the Premix WST-1 Cell Proliferation Assay System (Takara Bio,
Tokyo, Japan) in 96-well plates. Data are expressed as an absorbance
at 450 nm. Experiments were performed in triplicates.
Invasion Assay
Cells were seeded at a density of 1 × 106 per well in the 24-well

BD BioCoat Matrigel Invasion Chamber (BD Biosciences Discovery
Labware, Bedford, MA). Serum 10% was used as a chemoattractant.
After incubation for 22 hours, the membrane of the upper chamber
was fixed and stained by Diff-Quik reagent (Sysmex, Kobe, Japan).
Invaded cells were counted in four randomly selected sites per mem-
brane. Simultaneously, an equal number of cells were seeded on 24-well
plates and incubated for 22 hours, and WST assay was performed.
Anchorage-Independent Colony Formation Assay
Anchorage-independent cell growth was analyzed by plating 0.36%

top agarose (Bacto Agar; Becton Dickinson and Company, Franklin
Lakes, NJ) containing 1 × 105 cells on the surface of 0.72% bottom
agarose in six-well plates. Cells were fed weekly by overlying fresh
soft agar solution containing G418. Colonies were photographed after
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Figure 1. Analysis of HOPX-β promoter methylation and expression in CRC. (A) Schematic diagram of the three spliced transcript variants
of HOPX (top), and of CpG islands (gray area) in the 5′-flanking region of HOPX-β (bottom). Solid and dotted lines below the bottom panel
indicate the sequences for bisulfite sequencing analysis or TaqMan-MSP (Q-MSP), respectively. The length of the 5′ untranslated region for
transcript variants, HOPX-α, β, and γ is 464, 191, and 535 bp of exons, respectively. TSS, translation start site. (B) Representative results of
bisulfite sequencing of CRC cell lines, HCT116, TE15 (esophageal cancer cell line, negative control), primary CRC, and its corresponding
normal tissue. Arrowhead indicates dinucleotide CpG. N indicates corresponding normal tissue; T, primary tumor. (C) Top: Scatterplots of
TaqMan Q-MSP values of HOPX-β in primary CRC and their corresponding normal tissues. Dashed line indicates the optimal cutoff value
(2.89). Bottom: ROC curve of HOPX-β promoter methylation for distinguishing between malignant and normal samples. Area under the
curve (AUC) is 0.85 and represents the accuracy in distinguishing CRC from normal samples in terms of sensitivity and specificity (P <
.001). (D) Methylation status of 12 individual CpG sites (columns) of 10 cloned PCR products (rows), within the HOPX-β promoter region by
bisulfite sequencing. Open and filled circles, unmethylated and methylated CpG sites, respectively; x, deletion. Numbers in parenthesis
denote Q-MSP value. Results shown for cell lines (top) or tissue samples (bottom). TE15, esophageal cancer cell line served as negative
control. (E) Q-MSP values of HOPX-β in each stage (n = 99). Number in parenthesis indicates patient number. Data are expressed as
mean ± SEM. *P < .01. **P < .001. (F) Correlation analysis between MSI status and promoter hypermethylation of HOPX-β. H indicates
high; L, low; MSS, microsatellite stable. *χ2 test or Fisher exact test where appropriate.



Figure 1. (continued).

Neoplasia Vol. 14, No. 7, 2012 HOPX in Colorectal Cancer Katoh et al. 563
3 weeks of incubation, visualized by ethidium bromide staining. Two
independent experiments were performed, each in triplicate.

Cell Cycle Assay
Cells (1 × 106 cells/ml) were starved in the appropriate medium

supplemented with 0.2% FBS for 48 hours and were then transferred
to 10% FBS-containing medium for 24 hours for cell cycle transition.
Cells were then fixed in 75% ethanol and stained with propidium
iodide (Guava cell cycle reagent; Guava Technologies, Hayward, CA).
Cell cycle assay was carried out using the Guava PCA System. The
experiment was performed in duplicate and analyzed using CytoSoft
2.1.5 software (Guava Technologies).

Caspase 3 Assay
Caspase 3 activity was measured with Caspase Glo 3/7 Assay (Promega,

Madison, WI) according to the manufacturer’s recommendations. The
assay was carried out with 50 μg of cellular extracts in triplicate.

TUNEL Assay
Detection of free 3′-OH was done with the DeadEnd Colorimetric

TUNEL System (Promega) according to the manufacturer’s protocol.
Sections were counterstained with hematoxylin. Apoptotic cells were
counted in four different sections, four fields in each. Necrotic areas
were excluded.

Microarray Processing
Microarray experiments were performed using Affymetrix Human

U133 Plus 2.0 Arrays (Affymetrix, Santa Clara, CA), according to
the manufacturer’s instructions. Briefly, total RNA was used to pre-
pare a biotinylated target complementary RNA (cRNA) according
to the manufacturer’s recommendation (Affymetrix). Two hundred
nanograms of mRNA was used to generate first-strand cDNA using
T7-linked oligo(dT) primer. After second-strand synthesis, the cDNA
was subjected to in vitro transcription using an IVT labeling kit
(Affymetrix). Quantitative analyses of the isolated total RNA and
synthesized cRNA were conducted by electropherogram (Experion;
Bio-Rad Laboratories). The biotinylated cRNA was fragmented and
hybridized for 16 hours at 45°C with the array, which contains the
oligonucleotide probe sets for 54,675 full-length transcripts and
expressed sequence tags. The arrays were stained with streptavidin-
phycoerythrin and scanned using an Affymetrix Model Fluidics Station
450 and GeneChip Scanner 3000 (Affymetrix). The fluorescence
intensity of each probe was quantified using the GeneChip operating
software, GCOS version 1.4 (Affymetrix). Eachmicroarray was subjected
Table 1. Genes Differentially Expressed after HOPX Transfection.
Accession No.
 Gene Symbol
 Description
 GeneChip U133 (Fold Change)
 qRT-PCR (Fold Change)
HCT116
 DLD1
 HCT116
 DLD1
Upregulated genes

NM_005809
 PRDX2
 Peroxiredoxin 2
 4.50
 4.61
 1.62
 1.67

NM_004906
 WTAP
 Wilms tumor 1 associated protein
 5.47
 4.40
 5.79
 2.75
Downregulated genes

NM_001554
 CYR61
 Cysteine-rich, angiogenic inducer
 −5.56
 −33.33
 −1.56
 −2.70

NM_001423
 EMP1
 Epithelial membrane protein 1
 −7.69
 −20.00
 −2.50
 −2.70

NM_004431
 EPHA2
 Ephrin receptor EphA2
 −4.55
 −5.26
 −1.89
 −1.82

NM_005252
 FOS
 v-fos FBJ murine osteosarcoma viral

oncogene homolog

−11.11
 −33.33
 −33.33
 −50.00
NM_006931
 SLC2A3
 Solute carrier family 2, member 3
 −6.67
 −33.33
 −1.56
 −4.00
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to a standard quality control evaluation; the percentage of probe sets
reliably detected (present flag) in each array was between 41% and
45%, and the 3′/5′ ratio of the GAPDH was less than 1.25. All back-
ground intensities and noise factors were within the acceptable range
of 40.10 to 48.40 and 1.20 to 1.70, respectively.

Microarray Data Analysis
We compared expression levels of genes in HCT116 or DLD1 cells,

transfected with either a mock vector or a HOPX-expressing vector. To
define genes regulated by HOPX, we first floored to 50 all values less
than 50. Upregulated or downregulated genes were defined as genes
whose expression was changed by at least two-fold and also defined
as “present” in the upregulated or downregulated sample, respectively.
To select for more valid genes, we present genes up- or downregulated
in both HCT116 and DLD1 cells by at least two-fold (516 and
77 genes, Tables W4 and W5, respectively) or by at least four-fold
(2 and 5 genes, respectively; Table 1). All microarray data are MIAME-
compliant, and these data have been deposited in CIBEX at DDBJ
(Japan) (CBX253).

Microsatellite Instability Assay
DNA was extracted from 98 pairs of FFPE tissue samples as men-

tioned above. Finally, 97 pairs of samples were analyzed successfully.
Microsatellite assay was performed using Bethesda consensus panel
Figure 2. (A) RT-PCR analysis of mRNA expression of HOPX-β, α, and γ and core in DLD1 and HCT116 cell lines. TE15 served as a positive
control of HOPX-β and core expression. (B) Western blot analysis of HOPX using whole-cell lysates of DLD1 and HCT116 cell lines. TE15
served as positive control of HOPX protein expression. (C) RT-PCR analysis of mRNA expression of HOPX-β, α, and γ and core in DLD1 and
HCT116 after treatment with a demethylating agent, 5-Aza-dC, in the presence or absence of TSA, a histone deacetylase inhibitor. Upper:
Densitometric quantification of the bands of HOPX-β mRNA (normalized to β-actin). 1A or 5A indicates 1 or 5 μM 5-Aza-dC; T, TSA. (D) RT-
PCR analysis of mRNA expression of HOPX-β, α, and γ and core in human CRC samples. N indicates corresponding normal tissue;
T, primary tumor. (E) HOPX-β mRNA (top panel) and Q-MSP values of HOPX-β promoter methylation (bottom panel) in 27 pairs of fresh-
frozen human samples. HOPX-βmRNA values were normalized to β-actin. (F) Reciprocal relationship between Q-MSP value of HOPX-β (filled
markers) and gene expression of HOPX-β (open markers) in 27 patient samples (triangular and circular markers represent tumors and
paired normal mucosa, respectively). (G) Correlation between HOPX protein expression and Q-MSP values in independent 22 human
primary CRC patients (top). Representative pictures taken from immunohistochemistry of HOPX in methylation-positive or negative
CRC samples (bottom left and middle, respectively) and normal mucosa (bottom right). Bars, 100 μm.
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(BAT25, BAT26, D2S123, D5S346, and D17S250) [16] by Aoba
Genetics, Inc (Yokohama, Japan), as in a previous report [17]. The
presence of extra or shifted bands was classified as microsatellite
instability (MSI).

Statistical Analysis
χ2 test or Fisher exact test was used for categorical variables, and

Student’s t test was used for continuous variables. Data are expressed
as mean ± SEM. Clinicopathologic characteristics and follow-up data
were analyzed in association with 5-year disease-specific survival (DSS).
The follow-up time was calculated from the date of surgery. DSS was
estimated with Kaplan-Meier method and compared using the log-rank
test. A multivariate proportional hazard model was built using the vari-
ables that had prognostic potential in the univariate analysis (P < .1).
Fisher exact tests and multivariate logistic regression analysis were per-
formed for correlation analysis of HOPX-β promoter methylation status
with clinicopathologic parameters. P < .05 was considered significant.
Results

HOPX-β Promoter Structure
The location of the CpG islands in the HOPX promoter genomic

sequence is shown in Figure 1A. HOPX has three transcript variants
(HOPX-α [GenBank accession number NM_139212.2], HOPX-β
[NM_139211.2], and HOPX-γ [NM_032495.4]), of which only
HOPX-β promoter harbors CpG islands. Importantly, all three spliced
variants share the same open reading frame.
Figure 2. (continued).
HOPX-β Promoter Methylation Is Frequent and
Cancer-Specific in CRC Cell Lines and Human Tissues

We first examined the HOPX-β promoter methylation using bi-
sulfite sequencing in nine CRC cell lines (DLD1, HCT116, HCT15,
COLO205, LoVo, SW480, COLO320, CW-2, and CACO2). All nine
CRC cell lines harbored HOPX-β promoter methylation (representative
results shown in Figure 1B, top).

We next examined the HOPX-β promoter methylation status in
human CRC tissues. Using bisulfite sequencing, we detected HOPX-β
promoter methylation in 62.5% of the primary CRCs examined (10/
16), as opposed to none (0/16) in the corresponding normal mucosa
(representative results shown in Figure 1B, bottom). We then performed
Q-MSP analysis of 99 primary human CRC samples and 98 corre-
sponding normal mucosa (normal mucosa was not available in one pa-
tient). The methylation value was significantly higher in primary CRC
(7.04 ± 0.83) than in the corresponding normal tissues (0.43 ± 0.06,
P < .001; Figure 1C , top, and E). The optimal cutoff value for distin-
guishing between malignant and normal tissues was calculated using
a ROC analysis (Figure 1C , bottom). No normal tissue had a Q-MSP
value higher than 2.89, yielding 100% specificity, whereas 56.6% (56/
99) of primary CRC tissues had a value equal to 2.89 or higher. To assess
the correlation between Q-MSP values and methylation status of indi-
vidual CpG islands, we carried out the bisulfite sequencing with cloned
PCR products. All cell lines or human samples with Q-MSP values higher
than 2.89 showed denser methylation (Figure 1D). To evaluate the
correlation between Q-MSP values and different clinical stages, we cal-
culated Q-MSP values for each stage using the same 99 patient cohort.
CRC samples from each stage had an average Q-MSP value higher than
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2.89, which was significantly higher than that of their normal counter-
parts (Figure 1E). When comparing all pairs of stages, we could not
detect a significant difference but could detect a trend toward a higher
value of patients with stage III compared with that of stage II. Never-
theless, advanced stages (III-IV) displayed significantly higher Q-MSP
values than those of early stages (I-II).

Because CpG island methylator phenotype is thought to be associated
with MSI [18], we analyzed MSI status in 98 paired tumor and normal
samples of the same patient cohort. Of which, we could successfully
assayed MSI status in 97 pairs of samples. No correlation was found
between HOPX-β promoter methylation and MSI status (Figure 1F).
HOPX-β Promoter Methylation Results in Transcriptional
Silencing in CRC Cell Lines and Human Tissues

To investigate whether HOPX-β methylation results in transcrip-
tional silencing, we performed RT-PCR of the HOPX-core (common
to all the variants) and of the α, β, and γ variants, separately. HOPX-β
mRNA expression was undetectable in both DLD1 and HCT116 cell
lines (Figure 2A). Notably, DLD1 expressed low detectable levels of the
HOPX-core mRNA, in contrast to undetectable levels in HCT116.
The weak expression of HOPX-core mRNA in DLD1 was due to
HOPX-α mRNA expression. Nevertheless, Western blot analysis
showed that HOPX protein was undetectable in both cell lines
(Figure 2B). To further substantiate the hypothesis that HOPX-β silenc-
ing is due to its promoter hypermethylation, DLD1 andHCT116 were
treated with the demethylating agent 5-Aza-dC alone or in combina-
tion with histone deacetylase inhibitor TSA (Figure 2C). HOPX-β and
core expression, but not HOPX-α, or γ, were restored by demethyla-
tion with or without deacetylation. We next examined mRNA levels
of HOPX variants and core in human CRC frozen tissue samples. As
expected from the cancer-specific methylation of HOPX-β promoter,
lower levels of HOPX-β mRNA were detected in CRC samples com-
pared with their normal counterparts (Figure 2D).
Figure 3. Tumor suppressor functions of HOPX in human CRC cells. (A and B) HOPX mRNA (A) and protein (B) levels in control (mock)
and HOPX transfected cells (DLD1 and HCT116). Western blot analysis was performed using a HOPX-specific monoclonal antibody
(3D6) and a flag-V5 antibody (V5). Recombinant HOPX served as positive control. (C) Proliferation assay was performed for 5 days. Data
are expressed as absorbance levels at 450 nm. Experiments were repeated twice in triplicates. *P < .05. **P < .01. ***P < .001. Error
bars, SEM. (D) Matrigel invasion assay. After fixation and staining, invading cells were photographed (top) and counted (bottom) at 100×
magnification. Cell growth for 22 hours determined by the WST-1 assay was similar (data not shown). Two independent experiments
were done in triplicate, and values indicate means ± SEM. *P < .01. **P < .001. Error bars, SEM. (E) Invading cells in Matrigel invasion
assay were stained with phalloidin. F-actin labeling with phalloidin revealed that the mock cells exhibit active filopodia, whereas HOPX-
expressing cells exhibit fewer filopodia fibers and F-actins are aggregated in the cytoplasm. (F) Anchorage-independent colony formation
assay (soft agar assay) was performed with the indicated transfected cells. Colonies were counted and photographed under a microscope
after 3 weeks of cell culture (top right). Colonies were also visualized by ethidium bromide staining (top left). Numbers of colonies were
decreased after HOPX overexpression (bottom). *P < .001. (G) Top: Representative images of cell cycle analysis. Bottom: Distribution
of cell cycle phases. *P < .05. **P < .01. ***P < .001. Error bars, SEM. (H) Caspase 3 activity was assayed in the transfectants. Values
indicate relative activity to each mock transfected cell lines. *P < .01. **P < .001. Error bars, SEM.
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In an independent set of 27 patients, HOPX-β promoter hyper-
methylation was significantly (P = .002) associated with decreased
HOPX-β mRNA expression (Figure 2E ). Although several samples
did not show clear correlation between Q-MSP values and HOPX-β
expression (Figure 2E ), HOPX-β methylation and gene expression
were inversely correlated (Spearman rank correlation coefficient =
−0.87, P < .0001), suggesting that the promoter methylation is func-
tionally linked to gene silencing (Figure 2F ).
To evaluate the effect of HOPX-β methylation and silencing on

HOPX protein expression, we performed immunohistochemistry of the
HOPX protein in independent 22 human CRC samples. HOPX protein
expression was either present in more than 50% of malignant cells per
sample or completely absent in these cells. Therefore, we defined sam-
ples as either HOPX-positive or -negative. Primary CRC tissues with
Q-MSP value higher than 2.89 were significantly less HOPX-positive
compared to tissues with Q-MSP value less than 2.89 (Fisher exact test,
P = .015; Figure 2G). In addition, the only four cases that both have
a Q-MSP higher than 2.89 and are HOPX-positive had the lowest
Q-MSP values among the group with a Q-MSP of 2.89 or higher
(data not shown), and therefore, a Q-MSP average of only 5.1, com-
pared to 16.2 in the cases with Q-MSP of 2.89 or higher and HOPX-
negative. In addition, HOPX-positive samples had a significantly lower
Q-MSP value compared to that of HOPX-negative samples (1.9 and
14.7, respectively; P < .001). Furthermore, immunohistochemistry of
the HOPX protein in all 22 normal mucosa counterparts revealed strong
HOPX-positive expression (representative results shown in Figure 2G ,
bottom right). Interestingly, more stromal cells are HOPX-positive in
normal tissues.

Tumor-Suppressive Activity Is Increased in CRC Cells
Overexpressing HOPX

We built a construct containing the full-length cDNA of HOPX,
which is common to all three transcript variants, as mentioned before,
and used it to stably transfect HCT116 and DLD1 cells. As shown
in Figure 3A, parental HCT116 and DLD1 cells express undetectable
or low levels of HOPX, respectively (similar results shown also in
Figure 2A). As expected, HOPX overexpression resulted in increased
levels of HOPX mRNA and protein (Figure 3, A and B). The mRNA
levels in the HOPX transfectants were comparable to those in nor-
mal human colonic mucosa (data not shown). The specificity of the
anti-HOPX antibody (3D6) was validated by blocking the antibody-
specific reaction using a recombinant HOPX protein in immuno-
chemistry and Western blot assays (data not shown). To investigate
the effects of HOPX reactivation, we performed several tumor aggres-
siveness assays. Cell proliferation was significantly decreased in HOPX
transfectants compared with mock cells using the WST-1 assay
(Figure 3C ). In addition, Matrigel invasive activity was substantially
attenuated in HOPX transfectants (Figure 3D). Interestingly, the mor-
phologic appearance of the mock cells, that is, spindle or spicular shaped,
was different from that of HOPX transfectants, which was round
shaped. Staining with F-actin showed that this is due to the loss of ability
inHOPX transfectants to form filopodia protrusions, manifested by actin
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aggregations in the cytoplasm (Figure 3E). Moreover, HOPX transfect-
ants showed a dramatic reduction of colony number in an anchorage-
independent colony formation assay (Figure 3F). Cell cycle distribution
demonstrated that HOPX significantly increased G1 arrest. The
sub-G1 fraction (apoptotic cells) and G0/G1 populations were increased
(Figure 3G). In contrast, the S population was decreased (Figure 3G).
Indeed, HOPX transfectants showedmore caspase 3 activity than mock
transfectants in vitro (Figure 3H).
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DNA Microarray Analysis of Genes Regulated by HOPX
in DLD1 and HCT116
To delineate the pathways by which HOPX exerts its tumor sup-

pressor functions, we used DNA microarrays to analyze gene expres-
sion profiles of DLD1 and HCT116 cells transfected with HOPX.
Using this method, we identified 516 and 77 genes that were either
upregulated or downregulated, respectively, at least at a two-fold
ratio, both in DLD1 and HCT116 cells on transfection with HOPX
(Tables W4 and W5). Several of these genes were upregulated or down-
regulated by at least a four-fold ratio in both cells, suggesting a higher
level of significance (Table 1). The DNA microarray results were vali-
dated by qRT-PCR (Table 1). Of the downregulated genes, EPHA2
and CYR61 were previously shown to promote angiogenesis [19–22].
We performed the Matrigel invasion assay using double transfection

with FOS and HOPX. As shown in Figure W1A, forced expression of
FOS restored invasive ability in HOPX transfectants. However, com-
paring HOPX-FOS transfectants with mock-mock transfectants, the
restoration is not sufficient, suggesting that the suppressive effect of
HOPX in invasive ability may not be only due to down-regulation of
FOS. We also analyzed expression of CYR61 and EPHA2 by immuno-
histochemistry in randomly selected 17 CRC patients. Of 12 patients
with high Q-MSP, 9 (75%) and 11 (92%) were CYR61- and EPHA2-
positive in CRC cells, respectively (Figure W1B).

Tumor Suppressive Activity of HOPX In Vivo
To examine the effect of HOPX in vivo, colon cancer cells stably

transfected with HOPX were subcutaneously injected into the flanks
of nude mice. A remarkable reduction of tumor volume was observed
in mice injected with HOPX-transfected cells (Figure 4A). In addition,
as the DNA microarray analysis and immunohistochemistry showed
down-regulation of the proangiogenic factors EPHA2 and CYR61 by
HOPX (Table 1 and Figure W1B), we assessed the effect of HOPX
on angiogenesis in the xenograft mouse model. As expected, both
MVD and MVA were significantly reduced in tumors derived from
HOPX-transfected cells compared with themock cells (Figure 4B). Fur-
thermore, tumor derived from HOPX transfectants showed increased
apoptotic cells by TUNEL assay (Figure 4C ).

HOPX-β Promoter DNA Hypermethylation in Stage III
Patients Is Correlated with Worse Prognosis
Current guidelines published by the National Comprehensive

Cancer Network regarding treatment of CRC patients dictate that
all patients with stage III disease should receive adjuvant chemother-
apy. We therefore focused on this population of patients to identify
whether there is a subgroup of patients with stage III disease, with a
low value of HOPX-β promoter methylation, which have a favorable
Figure 4. Effects of HOPX on tumorigenicity and angiogenesis in vivo.
cells into the right flank of each mouse. Fifteen days after injection, m
growth (right). *P < .05. Error bars, SEM. (B) Left: Stromal angiogene
group of each cell line. *P< .05. **P< .01. ***P< .001. Error bars, SE
to detect endothelial cells. Angiogenesis was significantly suppresse
tumor. Bars, 100 μm. (C) TUNEL assay was performed in tumor der
×100). Apoptotic cells were counted in four different sections, four fiel
Figure 5. Kaplan-Meier analysis of 5-year DSS in patients with
stage III CRC. (A) Patients with stage III (n = 170). (B) Patients with
N1–stage III (n = 119). (C) Patients with N2–stage III (n = 51).
(A) Mock cells were injected into the left flank and HOPX-expressing
ice were killed, and pictures were taken (left). Time course of tumor
sis on day 15. P values were calculated by comparison with a mock
M. Right: Immunohistochemical staining with CD31 was performed
d in mice injected with HOPX transfectants. S indicates stroma; T,
ived from HOPX or mock-transfected DLD1 (original magnification,
ds in each. Necrotic areas were excluded. *P< .05. Error bars, SEM.
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prognosis, suggesting reconsideration of the need for adjuvant chemo-
therapy. We analyzed HOPX-β promoter methylation values in 170 pa-
tients with stage III CRC (Figure 5 and Table W2) and looked for a
correlation with prognosis, based on low or high values of methylation,
previously defined as less or greater than 2.89, respectively (Figure 1C).
Indeed, patients with stage III disease with one to three involved regional
lymph nodes (N1), with a low Q-MSP value, have a 5-year DSS of
90.6% compared with 71.4% in patients with a high Q-MSP value
(Figure 5B). Patients with high Q-MSP values also showed worse prog-
nosis in patients with stage III disease with four or more involved re-
gional lymph nodes (N2; Figure 5C). In a multivariate analysis of all
patients with stage III disease, HOPX-β promoter hypermethylation
was independently associated with worse prognosis, with a hazard ratio
of 1.40 (P = .035; Table W2). Furthermore, HOPX-β promoter hyper-
methylation was independently correlated with poor differentiation
(Table W6 and Figure W2), as a previous report [23], and also with
elevated CA19-9 levels (Table W6).

Discussion
We have previously shown that HOPX is a frequently methylated
tumor suppressor gene in esophageal and gastric cancers [13,14].
Therefore, in the present study, we investigated the role of HOPX
in CRC. Indeed, HOPX-β promoter is frequently hypermethylated
in a cancer-specific manner in colon cancer cell lines and human
tissues, with 100% specificity in CRC human tissues. Of note, only
a few genes that have promoter methylation with 100% cancer spec-
ificity were defined so far [24]. This methylation results in the down-
regulation of HOPX mRNA and protein levels. In human CRC cell
lines, forced expression of HOPX increased tumorigenicity. DNA
microarray revealed that HOPX downregulates genes involved
in angiogenesis and tumor progression. In a mouse xenograft model,
HOPX inhibited tumorigenesis and angiogenesis. Importantly, stage
III CRC patients show HOPX-β promoter hypermethylation are
associated with worse prognosis.

HOPX has three transcript variants, but all variants share the same
open reading frame. Only the HOPX-β promoter region harbors CpG
islands. Therefore, it was critical to investigate the effect of HOPX-β
promoter methylation on HOPX protein levels. Indeed, HOPX-β
promoter methylation was correlated with decreased levels of HOPX
protein in CRC patients (Figure 2G ). Interestingly, HOPX protein
was undetectable in DLD1 cells, which do not express HOPX-β
mRNA, but do express low levels of HOPX-core mRNA, probably
because of the expression of the α variant (Figures 2, A and B, and
3, A and B). This may be due to posttranscriptional regulation of the
HOPX-α variant. Collectively, these findings suggest that HOPX pro-
tein expression mainly relies on the expression levels of the HOPX-β
variant. Nevertheless, high-dose (5 μM) 5-Aza-dC with/without TSA
produced higher stimulation of HOPX-β reexpression in HCT116,
whereas exposure to 1 μM 5-Aza-dC alone was sufficient to induce
reexpression in DLD1 (Figure 2C ) as in esophageal and gastric cancer
[13,14]. Accordingly, other epigenetic modifications such as histone
modifications may be involved in silencing the HOPX-β gene in
DLD1, requiring further analysis in the future study.

We used DNA microarrays to explore, for the first time, genes regu-
lated by HOPX. Using this method, we suggest that HOPX upregu-
lates the WTAP and PRDX2 genes and downregulates FOS, EMP1,
SLC2A3, CYR61, and EPHA2 genes (Table 1). EPHA2 was shown
to promote invasion in prostate cancer and glioma [25] and also play
a role in angiogenesis and invasion in ovarian cancer [20]. EPHA2
is significantly overexpressed in CRC [26], and its overexpression is
correlated with high microvessel count [19] and reduced survival [27]
in CRC. CYR61 is a secreted molecule, involved in many types of
cancer. CYR61 was shown to promote angiogenesis [22] and invasion
[28] in gastric cancer, proliferation and invasion in esophageal cancer
[29], and tumorigenesis in breast cancer [30–33]. In accordance with
the suggested down-regulation of EPHA2 and CYR61 by HOPX
(Table 1), we showed reduced angiogenesis in vivo by HOPX over-
expression (Figure 4B).

Recently, HOPX was shown to play a pivotal role in intestinal stem
cell interconversion. HOPX labels a quiescent population of intestinal
stem cells at the +4 niche, which can give rise to more rapidly prolif-
erating Lgr5-expressing intestinal stem cells at the crypt base [34].
These findings suggest that HOPX down-regulation is correlated with
increased proliferation.

We also found out that more stromal cells are HOPX-positive in
normal tissues than in tumors. These HOPX-positive stromal cells
are mainly located superficially close to the normal mucosa, suggesting
that the expression of HOPX in stromal cells may have immuno-
pathologic roles and might be regulated by other mechanisms. Likewise,
HOPX expression on normal epithelial may be affected by other
mechanisms, resulting in a strong expression. Indeed, Albrecht et al.
[35] reported that the persistence of effector memory TH1 cells is criti-
cally regulated by HOPX through T-bet and deletion of HOPX sup-
pressed inflammatory response in colon. However, large-sized stromal
cells are alsoHOPX-positive in the present study (Figure 2G), indicating
that other immunocytes may be involved in normal immunopathology.
It is consistent with the data in UCSC Genome Bioinformatics (http://
genome.ucsc.edu/cgi-bin/hgGateway) in which other immune cells in-
cluding B, CD8, and NK cells express HOPX, requiring further study.

Further study should address the possible association of HOPX-β
promoter hypermethylation with worse prognosis in stage II CRC
patients, as a possible marker favoring administration of adjuvant
chemotherapy. In addition, further definition and investigation of
HOPX-regulated genes are critical to understand the pathways by
which HOPX exerts its tumor-suppressive activity.

In summary, we have shown that HOPX-β promoter hypermethyla-
tion is a frequent and cancer-specific event in CRC patients, correlated
with worse prognosis of patients with stage III disease. Inversely,
patients with N1-stage III disease without HOPX-β promoter hyper-
methylation demonstrated excellent prognosis, similar to that of pa-
tients with stage II disease, suggesting reconsideration of the adjuvant
chemotherapy currently indicated in these patients with stage III dis-
ease. Furthermore, HOPX-β promoter hypermethylation and protein
levels may be used as markers for aggressiveness in CRC patients and
as tools to screen for CRC.
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Table W1. Characteristics of 99 Patients.
Variables
 No. Patients
 %
Sex

Male
 59
 60

Female
 40
 40
Age, years

<60
 37
 37

≥60
 62
 63
Tumor position

Colon
 57
 58

Rectum
 42
 42
Differentiation

Nonpoor
 95
 96

Poor*
 4
 4
T factor

Tis
 5
 5

T1
 15
 15

T2
 7
 7

T3
 68
 69

T4
 4
 4
N factor

N0
 55
 56

N1
 26
 26

N2
 18
 18
Distant metastasis

Present
 23
 23

Absent
 76
 77
Peritoneal dissemination

Present
 5
 5

Absent
 94
 95
UICC stage

I
 25
 25

II
 25
 25

III
 24
 24

IV
 25
 25
Lymphatic invasion

Negative
 16
 16

Positive
 83
 84
Vascular invasion

Negative
 23
 23

Positive
 76
 77
Preoperative CEA

Normal (≤2.5 ng/ml)
 56
 57

Elevated (>2.5 ng/ml)
 43
 43
Preoperative CA19-9

Normal (≤37 ng/ml)
 71
 72

Elevated (>37 ng/ml)
 28
 28
Q-MSP value

<2.89
 43
 43

≥2.89
 56
 57
*Poor includes poorly differentiated, mucinous, and undifferentiated types.



Table W2. Prosgnostic Analysis of Clinicopathologic Variables in 170 Patients with Stage III CRC.
Variables
 No. Patients
 %
 5-Year DSS*
Univariate Analysis
 Multivariate Analysis
HR (95% CI)
 P†
 HR (95% CI)
 P†
Sex

Male
 97
 57.1
 1.12 (0.84-1.47)
 .438
 n/d
 n/d

Female
 73
 42.9
Age, years

<60
 74
 43.5
 0.97 (0.73-1.28)
 .818
 n/d
 n/d

≥60
 96
 56.5
Tumor position

Colon
 96
 56.5
 0.89 (0.67-1.18)
 .406
 n/d
 n/d

Rectum
 74
 43.5
Differentiation

Nonpoor
 149
 87.6
 1.38 (0.93-1.93)
 .103
 n/d
 n/d

Poor‡
 21
 12.4
T factor

T1, 2
 20
 11.8
 1.56 (0.95-3.17)
 .087
 1.36 (0.81-2.79)
 .275

T3, 4
 150
 88.2
N factor

N1
 119
 70.0
 1.98 (1.50-2.63)
 <.001
 1.92 (1.42-2.59)
 <.001

N2
 51
 30.0
Intramural lymphatic involvement

Negative
 0
 0.0
 n/a
 n/a
 n/a
 n/a

Positive
 170
 100.0
Intramural vascular involvement

Negative
 7
 4.1
 693.7
 .023
 n/d
 n/d

Positive
 163
 95.9
Preoperative CEA

Normal (≤2.5 ng/ml)
 103
 60.6
 1.81 (1.36-2.43)
 <.001
 1.51 (1.12-2.07)
 .008

Elevated (>2.5 ng/ml)
 67
 39.4
Preoperative CA19-9

Normal (≤37 ng/ml)
 150
 88.2
 1.67 (1.16-2.29)
 .007
 1.12 (0.74-1.63)
 .582

Elevated (>37 ng/ml)
 20
 11.8
Q-MSP value

<2.89
 85
 50.0
 1.35 (1.02-1.81)
 .037
 1.40 (1.02-1.92)
 .035

≥2.89
 85
 50.0
CI indicates confident interval; HR, hazard ratio; n/a, not applicable; n/d, not determined.
There was no event in intramural invasion-negative cases, so that this variable was excluded from multivariate analysis.
*End point: date of death or March 31, 2007.
†Cox proportional hazard model.
‡Poor includes poorly differentiated, mucinous, and undifferentiated types.



T
ab
le

W
3.

Se
qu
en
ce
s
of

Pr
im

er
s
an
d
Fl
uo
re
sc
en
t
Pr
ob
es
.

M
et
ho
d

G
en
e

Fo
rw
ar
d
(5
′-
3′
)

Fl
uo
re
sc
en
t
Pr
ob
e
(5
′-
3′
)

R
ev
er
se

Pr
im

er
(5
′-
3′
)

A
nn

ea
lin

g
T
em

pe
ra
tu
re

(°
C
)

B
is
ul
fit
e
se
qu
en
ci
ng

H
O
PX

-β
T
A
G
T
T
T
T
G
T
T
T
G
G
A
G
A
G
G
G
T
T
T
T
A
A
A
G

A
A
C
C
T
C
C
C
C
T
A
A
A
A
A
C
A
A
A
C
T
T
A
A
C

62
T
aq
M
an
-Q

-M
SP

H
O
PX

-β
T
T
T
G
G
A
G
A
G
G
G
T
T
T
T
A
A
A
G
C
G

C
G
G
A
G
A
T
A
G
A
A
G
G
T
C
G
T
T
T
A
T
C
G
G
G
G
A
G
G
T
C
G

A
A
C
A
A
A
C
T
T
A
A
C
A
A
A
T
C
G
C
G
A
A

60
T
aq
M
an
-Q

-M
SP

β-
ac
tin

T
G
G
T
G
A
T
G
G
A
G
G
A
G
G
T
T
T
A
G
T
A
A
G
T

A
C
C
A
C
C
A
C
C
C
A
A
C
A
C
A
C
A
A
T
A
A
C
A
A
A
C
A
C
A

A
A
C
C
A
A
T
A
A
A
A
C
C
T
A
C
T
C
C
T
C
C
C
T
T
A
A

60
R
T
-P
C
R
/q
R
T
-P
C
R

H
O
PX

-α
an
d
γ

C
A
A
A
C
C
C
A
G
G
G
C
T
T
G
C
G
C
T
T

G
C
G
G
A
G
G
A
G
A
G
A
A
A
C
A
G
A
G
A
T

62
R
T
-P
C
R
/q
R
T
-P
C
R

H
O
PX

-β
G
G
T
C
C
C
C
C
T
T
T
C
G
G
G
A
G
G
A
A

G
C
G
G
A
G
G
A
G
A
G
A
A
A
C
A
G
A
G
A
T

62
R
T
-P
C
R
/q
R
T
-P
C
R

H
O
PX

-c
or
e

C
A
G
A
G
G
A
C
C
A
G
G
T
G
G
A
A
A
T
C
C

G
C
G
G
A
G
G
A
G
A
G
A
A
A
C
A
G
A
G
A
T

62
qR

T
-P
C
R

PR
D
X2

G
C
A
G
T
G
A
C
A
C
G
A
T
T
A
A
G
C

T
A
T
C
C
G
T
T
A
G
C
C
A
G
C
C
T
A

60
qR

T
-P
C
R

W
T
A
P

A
G
A
A
C
A
G
T
C
A
G
A
G
G
C
C
A
C
A
A
G

T
T
C
C
C
T
G
G
A
G
A
A
G
A
A
G
G
A
A
A
G

55
qR

T
-P
C
R

FO
S

T
T
A
C
T
A
C
C
A
C
T
C
A
C
C
C
G
C
A
G
A

G
A
A
T
G
A
A
G
T
T
G
G
C
A
C
T
G
G
A
G
A

55
qR

T
-P
C
R

C
YR

61
C
A
T
G
A
T
G
A
T
C
C
A
G
T
C
C
T
G

T
T
G
A
A
C
A
G
C
C
T
G
T
A
G
A
A
G

55
qR

T
-P
C
R

EP
H
A
2

C
T
G
A
G
C
G
T
A
T
C
T
T
C
A
T
T
G

A
A
T
G
G
T
G
T
C
A
A
T
C
T
T
G
G
T

60
qR

T
-P
C
R

SL
C
2A

3
T
C
T
A
T
T
A
C
T
C
A
A
C
A
G
G
A
A
T

C
A
G
T
G
A
A
G
A
T
A
G
T
A
T
T
A
A
C
C

55
qR

T
-P
C
R

EM
P1

C
T
G
G
C
A
A
G
A
G
C
A
G
A
T
A
C
T

T
T
T
G
C
T
T
T
G
G
G
T
C
A
G
A
A
G

55
R
T
-P
C
R
/q
R
T
-P
C
R

β-
ac
tin

G
C
T
C
G
T
C
G
T
C
G
A
C
A
A
C
G
G
C
T
C

C
A
A
A
C
A
T
G
A
T
C
T
G
G
G
T
C
A
T
C
T
T
C
T

55
/6
2



Table W5. Downregulated Genes by HOPX in DNA Microarray at a Two-fold Ratio.
Probe Set
 Gene Symbol
 HCT116 Mock Signal
 HCT116 HOPX Signal
 DLD1 Mock Signal
 DLD1 HOPX Signal
 HCT116 Log2 Ratio
 DLD1 Log2 Ratio
37028_at
 PPP1R15A
 136.5
 62.2
 1092
 75.4
 −1.1
 −3.9

36829_at
 PER1
 262.1
 101.7
 403.3
 55.8
 −1.4
 −2.9

242669_at
 UFM1
 219.3
 60.8
 161.7
 64.7
 −1.9
 −1.3

239451_at
 —
 143
 50
 169.2
 50
 −1.5
 −1.8

230265_at
 SEL1L
 104.4
 50
 182.1
 84
 −1.1
 −1.1

229460_at
 FAM126B
 192.3
 90.8
 218.4
 60.2
 −1.1
 −1.9

228234_at
 TICAM2 /// TMED7
 851.6
 281
 372.5
 105.8
 −1.6
 −1.8

228173_at
 GNAS
 110.7
 53.4
 130.6
 59.8
 −1.1
 −1.1

227747_at
 MPZL3
 148.7
 70
 261.1
 52.4
 −1.1
 −2.3

227404_s_at
 EGR1
 339.7
 93.6
 695.6
 154.4
 −1.9
 −2.2

227345_at
 TNFRSF10D
 843.5
 247.6
 693.4
 234.1
 −1.8
 −1.6

227309_at
 YOD1
 703.4
 264
 785.5
 133.5
 −1.4
 −2.6

226640_at
 DAGLB
 132.9
 50
 133.8
 50
 −1.4
 −1.4

226275_at
 MXD1
 101.3
 50
 263.9
 97.4
 −1.0
 −1.4

225832_s_at
 DAGLB
 111
 50
 129.6
 50
 −1.2
 −1.4

225799_at
 LOC541471 /// NCRNA00152
 297.2
 122.6
 1208.7
 263.4
 −1.3
 −2.2

225090_at
 SYVN1
 206.4
 97.9
 176.3
 57.2
 −1.1
 −1.6

224797_at
 ARRDC3
 251.1
 95.2
 101.5
 50
 −1.4
 −1.0

222690_s_at
 TMEM39A
 268.7
 104.3
 353.1
 101.3
 −1.4
 −1.8

222262_s_at
 ETNK1
 223.4
 91.8
 334.6
 84.3
 −1.3
 −2.0

222088_s_at
 SLC2A14 /// SLC2A3
 1580.1
 243
 110.9
 50
 −2.7
 −1.1

222018_at
 NACA /// NACA2 /// NACAP1
 201.5
 93.9
 267.9
 100.8
 −1.1
 −1.4

217173_s_at
 LDLR
 146.1
 50
 102.1
 50
 −1.5
 −1.0

216268_s_at
 JAG1
 355
 114
 972.4
 370.9
 −1.6
 −1.4

215222_x_at
 MACF1
 211.6
 64.6
 133.2
 60
 −1.7
 −1.2

214752_x_at
 FLNA
 242.3
 100
 380
 182.4
 −1.3
 −1.1

214683_s_at
 CLK1
 338.3
 94.8
 726.9
 249.6
 −1.8
 −1.5

214016_s_at
 SFPQ
 936.4
 415.3
 1675
 511.9
 −1.2
 −1.7

213746_s_at
 FLNA
 254.6
 66.9
 313.9
 145.4
 −1.9
 −1.1

212457_at
 TFE3
 164.6
 69.1
 355.4
 152
 −1.3
 −1.2

212444_at
 —
 2573.1
 1029.2
 1157
 466.8
 −1.3
 −1.3

210764_s_at
 CYR61
 791.7
 141.8
 1948
 51.7
 −2.5
 −5.2

210676_x_at
 RGPD5 /// RGPD6 /// RGPD8
 180
 72.7
 605.6
 187.6
 −1.3
 −1.7

210664_s_at
 TFPI
 443.9
 176.8
 201.4
 50.2
 −1.3
 −2.0

210346_s_at
 CLK4
 130
 57.1
 309.9
 112.3
 −1.2
 −1.5

209907_s_at
 ITSN2
 173.3
 84
 144.2
 50
 −1.0
 −1.5

209305_s_at
 GADD45B
 156.8
 76.5
 1576.8
 102.5
 −1.0
 −3.9

209304_x_at
 GADD45B
 192.5
 79.2
 1224.6
 101.5
 −1.3
 −3.6

209270_at
 LAMB3
 1134.9
 218.9
 1541.6
 646.7
 −2.4
 −1.3

209189_at
 FOS
 877.6
 76
 1499.3
 50
 −3.5
 −4.9

209099_x_at
 JAG1
 399.1
 103.5
 1059
 445.3
 −1.9
 −1.2

208744_x_at
 HSPH1
 123
 50
 2317.9
 115.6
 −1.3
 −4.3

207574_s_at
 GADD45B
 312.4
 143.1
 2184.9
 176.2
 −1.1
 −3.6

206976_s_at
 HSPH1
 801.6
 289.5
 7006.9
 647
 −1.5
 −3.4

204733_at
 KLK6
 115.5
 55.1
 996.1
 427.2
 −1.1
 −1.2

204363_at
 F3
 1017.9
 394.9
 343.8
 157.7
 −1.4
 −1.1

203499_at
 EPHA2
 1002.5
 219.9
 1027.2
 191.4
 −2.2
 −2.4

203397_s_at
 GALNT3
 1004.9
 375.3
 696.5
 235.3
 −1.4
 −1.6

203108_at
 GPRC5A
 4713.6
 1335.8
 1984.9
 519.3
 −1.8
 −1.9

203021_at
 SLPI
 103.1
 50
 433.1
 106.5
 −1.0
 −2.0

202912_at
 ADM
 5707.9
 1915.5
 2337.8
 1041.2
 −1.6
 −1.2

202842_s_at
 DNAJB9
 465.9
 194.5
 779.2
 197
 −1.3
 −2.0

202771_at
 FAM38A
 672.6
 323
 566.1
 249.3
 −1.1
 −1.2

202733_at
 P4HA2
 1168.1
 357.6
 1595.5
 513
 −1.7
 −1.6

202679_at
 NPC1
 1602
 357
 893.5
 230.7
 −2.2
 −2.0

202558_s_at
 HSPA13
 483.1
 127.5
 245.3
 50
 −1.9
 −2.3

202499_s_at
 SLC2A3
 4317.3
 628.8
 318.1
 50
 −2.8
 −2.7

202497_x_at
 SLC2A3
 1223.2
 159.1
 112
 50
 −2.9
 −1.2

202185_at
 PLOD3
 919.6
 339.2
 800.5
 344.1
 −1.4
 −1.2

202130_at
 RIOK3
 1233.7
 535.7
 1550.9
 665.4
 −1.2
 −1.2

202067_s_at
 LDLR
 219.3
 50
 205.3
 86.2
 −2.1
 −1.3

201939_at
 PLK2
 806.2
 350.8
 693.3
 323.3
 −1.2
 −1.1

201694_s_at
 EGR1
 1635.6
 416.5
 4085.5
 527.7
 −2.0
 −3.0

201693_s_at
 EGR1
 393.5
 114.7
 1281.7
 104
 −1.8
 −3.6

201531_at
 ZFP36
 555.6
 233.7
 917.6
 164.5
 −1.2
 −2.5

201465_s_at
 JUN
 115.7
 50
 661.4
 114.8
 −1.2
 −2.5

201464_x_at
 JUN
 730.5
 298.1
 3342.3
 857.3
 −1.3
 −2.0

201325_s_at
 EMP1
 878.7
 118.1
 250.7
 50
 −2.9
 −2.3

201324_at
 EMP1
 2645.2
 498
 797.3
 58.1
 −2.4
 −3.8

201289_at
 CYR61
 1482.8
 284.7
 3062.1
 131.6
 −2.4
 −4.5

201041_s_at
 DUSP1
 618.7
 280.2
 1524.8
 181.1
 −1.1
 −3.1

200924_s_at
 LOC442497 /// SLC3A2
 488.1
 242.8
 2518.9
 589.5
 −1.0
 −2.1



Table W5. (continued )
Probe Set
 Gene Symbol
 HCT116 Mock Signal
 HCT116 HOPX Signal
 DLD1 Mock Signal
 DLD1 HOPX Signal
 HCT116 Log2 Ratio
 DLD1 Log2 Ratio
200859_x_at
 FLNA
 458.4
 103.5
 645.2
 259
 −2.1
 −1.3

200825_s_at
 HYOU1
 536.4
 189.5
 920.8
 221.8
 −1.5
 −2.1

200799_at
 HSPA1A /// HSPA1B
 138.1
 50
 398
 50
 −1.5
 −3.0

1554462_a_at
 DNAJB9
 118
 54.3
 144.4
 59.3
 −1.1
 −1.3

1007_s_at
 DDR1
 852.1
 320.8
 451.6
 174.4
 −1.4
 −1.4
Figure W1. (A) Matrigel invasion assay in double transfectants (mock-mock, HOPX-mock, mock-FOS, and HOPX-FOS). After fixation and
staining, invading cells were photographed (right) and counted at 100× magnification. Left: Data are expressed relative to mean invad-
ing cells of mock-mock double transfectant. Cell growth for 22 hours determined by the WST-1 assay was similar (data not shown). Two
independent experiments were done in triplicate, and values indicate means ± SEM. **P < .001. Error bars, SEM. (B) Representative
immunohistochemistry of CYR61 and EPHA2 in CRC with low and high Q-MSP value of HOPX-β (original magnification, ×100). Of note,
CYR61 is expressed in stroma of all CRC samples but is suppressed in epithelial cells in CRC with low Q-MSP value (left bottom).



Figure W2. Representative immunohistochemistry of HOPX in
well-differentiated CRC with a low Q-MSP value (0.6) of HOPX-β
(left) and poor differentiated CRC with a high Q-MSP value (35.1)
of HOPX-β (right). Bars, 100 μm.
Table W6. Correlation Analysis of Clinicopathologic Variables in Stage III CRC with Methylation Status of HOPX-β.
Variables
 Patient No.
 HOPX-β Promoter Hypermethylation
 Multivariate Analysis
Positive
 Negative
 Positive Rate (%)
 P*
 OR (95% CI)
 P†
Sex

Male
 97
 48
 49
 49.5
 >.999
 0.80 (0.41-1.54)
 .511

Female
 73
 37
 36
 50.7
Age, years

<60
 74
 36
 38
 48.6
 .877
 1.13 (0.58-2.18)
 .722

≥60
 96
 49
 47
 51.0
Tumor position

Colon
 96
 48
 48
 50.0
 >.999
 0.99 (0.51-1.91)
 .968

Rectum
 74
 37
 37
 50.0
Differentiation

Nonpoor
 149
 70
 79
 47.0
 .060
 4.05 (1.40-13.34)
 .014

Poor
 21
 15
 6
 71.4
T factor

T1, 2
 20
 9
 11
 45.0
 .813
 1.23 (0.42-3.69)
 .710

T3, 4
 150
 76
 74
 50.7
N factor

N1
 119
 64
 55
 53.8
 .180
 0.47 (0.20-1.11)
 .091

N2
 51
 21
 30
 41.2
Intramural lymphatic involvement

Negative
 0
 0
 0
 0.0
 n/a
 n/a
 n/a

Positive
 170
 85
 85
 50.0
Intramural vascular involvement

Negative
 7
 4
 3
 57.1
 >.999
 0.84 (0.13-5.24)
 .853

Positive
 163
 81
 82
 49.7
Preoperative CEA

Normal (≤2.5 ng/ml)
 103
 46
 57
 44.7
 .116
 1.68 (0.84-3.42)
 .147

Elevated (>2.5 ng/ml)
 67
 39
 28
 58.2
Preoperative CA19-9

Normal (≤37 ng/ml)
 150
 70
 80
 46.7
 .030
 3.32 (1.09-11.68)
 .044

Elevated (>37 ng/ml)
 20
 15
 5
 75.0
OR, odds ratio.
*Fischer exact test.
†Multivariate logistic regression analysis.


